
AUDIO RESTORATION: CLICK REMOVAL

Junhao Wang
McGill University

MUMT 501 Final Project

1. INTRODUCTION

In audio signal processing, the term "click" refers to a type
of localized finite-duration degradation present in various
types of audio media. Clicks can occur at random positions
in the audio signal. They differ from global audio degrada-
tion such as background noise and hiss noise in that clicks
belong to impulsive noise that only affect certain parts of
the waveform while the global noise affects all samples. In
most situations, audio recordings corrupted by impulsive
noise have at least 90% of the samples unaffected [1]. This
makes it possible to detect and remove the clicks using the
surrounding undegraded samples.

The objective of this project is to study and implement
the click removal algorithm proposed by [3]. Specifically,
the click removal algorithm incorporates two components:
detection [3] and interpolation [4]. In the detection pro-
cess, the degraded samples are identified and located in the
mixture. Then, in the interpolation process, the values of
detected noise samples are replaced with more appropri-
ate values, which are obtained by interpolation. The whole
algorithm works under the assumption that the underlying
audio signal can be modeled by short-term stationary au-
toregressive processes.

2. DETECTION SIGNAL

Clicks can be detected by identifying outliers in the wave-
form. The audio signal can typically be modeled accu-
rately as an autoregressive process. In this case, the cor-
rupted audio signal x is considered a mixture of the origi-
nal signal s and the impulsive noise n

xt = st + nt. (1)

Potential background noise and other non-impulsive
noise elements are ignored, as we only focus on detect-
ing clicks. It is assumed that the original clean signal s
is drawn from a locally stationary autoregressive process,
where each sample can be modeled as a linear combina-
tion of the p preceding samples using a known set of au-
toregressive coefficients a = [a1, . . . , ap] and white noise
(residual error) et

st = −
p∑

k=1

akst−k + et. (2)

In practice, the autoregressive parameters a and the
variance σ2

e of the excitation signal e are unknown and
must be estimated from the mixture x. A robust algorithm

is thus needed to estimate the correct autoregressive pa-
rameters from the corrupted signal. In this project, Yule-
Walker equations are used, which exploit the relationship
between autoregressive parameters and the autocorrelation
function. If the autoregressive model is fitted to the mix-
ture x, large errors would occur at the degraded samples
because the click samples are outliers, which are unrelated
to their neighbors. Combining Eqn (1) and Eqn (2), the
mixture x can be rewritten, and the noise terms can be
grouped together

xt = −
p∑

k=1

akst−k + et + nt, (3)

xt = −
p∑

k=1

ak (xt−k − nt−k) + et + nt, (4)

dt = xt +

p∑
k=1

akxt−k = et + nt +

p∑
k=1

aknt−k. (5)

As the excitation signal e is random and generally much
smaller than the original signal s, the term dt is a good
measure of the noise. The detection signal |dt| will take
on large values at noisy samples and small values other-
wise. In particular, for a given sample xt, if the previous p
samples are all undegraded, dt is exactly the sum of nt and
et. Contrarily, if impulsive noise is present in the previous
p samples, the impulsive noise will propagate and affect
the detection accuracy. Depending on their values, noisy
samples in the same vicinity may build up constructively
or cancel each other out, leading to false positives or false
negatives in the detection.

To visualize the detection signal, an experiment was
conducted with clean audio signal and artificial impulsive
noise. 2,000 samples were taken from an audio file and
Nmax = 50 samples of gaussian noise were added to the
middle of the signal. The order p of the autoregressive
model was set to 3 ∗ Nmax + 2 = 152 according to em-
pirical results in [2]. The clean signal, signal with artificial
noise, and the detection signal computed from the mixture
are shown in Figure 1.

3. THRESHOLDING

As seen in Figure 1, the magnitude of the detection sig-
nal |dt| generally reflects the level of the noise. We can
roughly locate the degraded samples by naively imposing
a threshold λ on the detection signal. The aim is then to



Figure 1. Clean signal with artificial clicks

Figure 2. Precision-recall curve obtained by direct thresh-
olding

find the best threshold that gives the best detection perfor-
mance. As this is a binary classification problem, precision
and recall are good metrics suitable for this task. Preci-
sion is the ratio between the number of true positives and
detected positives, and recall is the ratio between the num-
ber of true positives and actual positives. In selecting the
threshold, there is a trade-off between high precision and
high recall. In a perfect detection algorithm, the precision
and recall should both be 1.

3.1 Direct Thresholding

A wide range of threshold values λK are tested.

λK = Kσe, (6)

where σe is the standard deviation estimated in the previ-
ous section, andK lies between 0 and 12 with an increment
of 10−4. For each value of K, a threshold is computed and
imposed to the detection signal. By comparing the predic-
tion and the ground-truth labels, the precision and recall
curve is obtained and plotted in Figure 2. Obviously, with
the best compromise around 0.6 for both precision and re-

Figure 3. Precision-recall curve obtained by thresholding
with post-processing

call, direct thresholding did not achieve satisfactory per-
formance. There are two reasons why direct thresholding
does not work well: First, even though the burst region
of detection signal generally shows high amplitudes, low
values do exist within the same region, which are proba-
bly caused by destructive interference. This leads to false
negatives. Second, the noisy samples may give rise to the
following p samples, due to the nature of autoregressive
process. This leads to false positives.

3.2 Thresholding with Post-processing

To alleviate this to some extent, knowledge about the na-
ture of impulsive noise is helpful. In real-world recordings,
clicks often occur in groups. It is rare for a single impulse
to appear in the corrupted waveform. In fact, clicks of-
ten have some finite width between 5 and 100 samples at
a 44.1kHz sampling rate, which corresponds to the width
of physical scratch or irregularity in the recorded medium
[1]. Therefore, it is reasonable to assume that the samples
within a certain range around a detected noise sample also
belong to the noise. In the previous example, as we know
that there is only one burst in the waveform, we can take
the first and the last sample that exceeds the threshold and
assume all samples in between are noise. Using this strat-
egy, a new precision-recall curve is obtained as shown in
Figure 3. Now the algorithm achieves almost perfect per-
formance, with a precision of 1.0 and recall of 0.96.

However, in real-world applications, multiple bursts
could be present in the audio signal (e.g., Figure 4). In
this case, it’s impractical to assume all samples between
the first and last noise sample belong to noise. Alterna-
tively, using a similar idea, a fusion parameter b is defined,
which measures the maximum number of consecutive sam-
ples within a burst whose values are lower than the thresh-
old [3]. For any two samples where the detection signal ex-
ceeds the threshold, if the distance between them is smaller
than b samples, all samples between them are considered
noise.

In summary, the detection of clicks is controlled by the



Figure 4. Real audio example with multiple bursts

Figure 5. Detected clicks using different parameter values

threshold parameter K and the fusion parameter b. For the
same signal, different K and b values would result in dif-
ferent number of detected clicks. Figure 5 illustrates the
position and number of detected clicks using different pa-
rameter combinations. A value of 1 on the vertical axis
corresponds to a detected click. Generally, a higher thresh-
old leads to less positive detection. Using larger value
for b tends to merge together the bursts that are close to
each other. In experimenting with these two parameters,
it is found that the actual detection performance depends
heavily on the signal itself. Different signals would re-
quire different set of parameters to accurately detect the
bursts. Fine-tuning these parameters is crucial for satisfac-
tory click removal.

4. INTERPOLATION

After determining the positions of degraded samples, the
declicked signal can be constructed by replacing the de-
graded samples with more appropriate values. For estimat-
ing these values, it is assumed that the degraded samples
do not contain any information about the underlying sig-
nal. Therefore, missing samples at the degradation can be

estimated by interpolation based on the surrounding sam-
ples.

The interpolation scheme based on autoregressive mod-
eling [2] [4] can be applied in this case because two condi-
tions are satisfied: First, the positions of the missing sam-
ples are known (estimated at the detection step). Second,
the missing samples are surrounded by a sufficient number
of known (undegraded) samples. Using the same order and
autoregressive parameters estimated at the detection step,
the missing samples can be easily estimated.

As an example, a short segment of corrupted signal is
shown in Figure 6, along with the detection function, de-
tected clicks, and reconstructed signal. The predicted val-
ues for samples at the detected clicks fit well into the over-
all structure of the waveform, leading to little audible dis-
tortion.

5. EXPERIMENTS ON LONGER SIGNALS

For testing the algorithm in practice, three real-world mu-
sic recordings are selected 1 . The recordings are corrupted
by various levels of impulsive noise from small crackles to
large bursts. In the following, we only discuss experiments
performed on the classical music excerpt by Mussorgsky,
as it is the same corrupted extract as used in [3].

5.1 Overlapping Frames

Since the autoregressive assumption is only valid on a local
scale, the audio track is first split into overlapping frames
with a frame length of Nw and a hop size of Nh. The same
parameter settings are used as [3], where Nh = Nw/4,
corresponding to a 75% overlap. Every frame is processed
by the detection and interpolation procedures discussed in
the previous sections. To reconstruct the signal, each pro-
cessed frame is multiplied by a Hamming window of size
Nw and added iteratively with a 75% overlap. In order to
perfectly reconstruct the signal, the hamming window is
scaled to

w(k) =
1

4× 0.54

(
0.54− 0.46 cos

(
2π
k − 1

Nw

))
. (7)

5.2 Parameters

There are three parameters to tune in this click removal al-
gorithm: the fusion parameter b, the threshold parameter
K, and the number of iterations I . It is claimed in [3] that
K = 2 and b = 20 yield good performance in various
types of audio signals, and iterating the algorithm several
times generally improves the result. In this section, we
explore different values for these parameters. For other
parameters such as Nmax and p, we directly use the same
setting as [3]. Since there are no ground-truth annotations
for the audio files, it is hard to quantitatively evaluate the
performance of the algorithm and to search for the best
parameter combinations accordingly. Therefore, we rely
primarily on subjective hearing tests to evaluate the effec-
tiveness of this algorithm.

1 http://www-sigproc.eng.cam.ac.uk/Main/SJGSpringer



Figure 6. A corrupted signal with the detection function and the interpolation result

5.2.1 Threshold parameter K

The threshold parameter controls the threshold. The higher
theK, the higher the threshold and thus the lower detection
sensitivity. If the threshold is set too high, few samples will
exceed the threshold and clicks remain in the signal. If the
threshold is set too low, normal samples would be detected
as noise and distortion may occur. Figure 7 shows the
36-second classical music excerpt by Mussorgsky, and its
declicked versions using different thresholds. At K = 0.5,
the signal is clearly distorted from the original signal. At
K = 8, some impulses remain in the reconstructed signal.
These discrepancies are clearly audible in the resulting au-
dio files 2 .

5.2.2 Fusion parameter b

As discussed in section 3, a large fusion parameter b tends
to merge together the bursts that are close to each other.
Therefore, this parameter controls the length of detected
clicks. The same excerpt by Mussorgsky was processed
using different values for b and the results are plotted in
Figure 8. When using b = 1, the detection algorithm is the
same as direct thresholding, which did not achieve satisfac-
tory performance in detecting the degraded samples. This
is verified by observing the waveform as well as listening
to the output. Clicks remain in the signal when using such
small value for b. For b = 20 and b = 40, in this case,
there is no significant difference between the two results 3 .

5.2.3 Number of iterations I

The click detection process relies heavily on the estimated
autoregressive parameters. Therefore, the whole process

2 Please consult the attached audio files: MussK0.5b20I1.wav,
MussK2b20I1.wav, and MussK8b20I1.wav

3 Please consult the attached audio files: MussK2b1I1.wav,
MussK2b20I1.wav, and MussK2b40I1.wav

can be iterated for several times to attempt for a better re-
sult. At the first iteration, the autoregressive parameters
are estimated from the corrupted signal. After one itera-
tion, many of the clicks are detected and replaced by more
appropriate values. If we compute the autoregressive pa-
rameters again on the declicked signal, we will likely end
up with better parameters because the declicked signal is
cleaner than the corrupted signal that we started with.

Figure 9 shows the same audio example and its
declicked versions after one and two iterations (K =
2, b = 20). It is obvious that the samples degraded by
impulsive noise, which have significantly higher ampli-
tudes than other samples in the vicinity are replaced by
values that better fit the waveform in the declicked ver-
sions. However, there is no visible difference between the
two declicked waveforms. After listening to the three au-
dio files, it was determined that the click removal algorithm
effectively removed the impulsive noise and did not intro-
duce audible distortion and artifacts 4 . The difference be-
tween the one-iteration and two-iteration versions is very
subtle and hardly audible. Therefore, it is reasonable to
conclude that in this specific case, one iteration is suffi-
cient for impulsive noise removal.

6. CONCLUSION

In this project, the click removal algorithm proposed by
[3] is implemented and explored. A subset of parameters
are investigated and tested on real-world music recordings.
The algorithm achieved good performance in both detect-
ing and removing the impulsive noise in the audio signal.

The algorithm is simple and works entirely in the time
domain. One limitation of this algorithm is that it is
not self-adaptive. The right combination of parameters is
crucial for good performance, and it may vary from one

4 Please consult the attached audio files: MussK2b20I1.wav and
MussK2b20I2.wav



Figure 7. Click removal results using different thresholds

Figure 8. Click removal results using different values for the fusion parameter



Figure 9. Click removal results using different number of iterations

recording to another. Therefore, for each corrupted record-
ing, the parameter values need to be determined through
trial and error.

In implementing this algorithm, the interpolation part
was supposed to use the same autoregressive parameters
estimated in the detection stage. However, this part of im-
plementation is rather complex and the fillgaps function in
the signal processing toolbox of MATLAB is used, which
works in the same way as proposed by [4] but does not take
pre-computed autoregressive parameters as input. This is
found to significantly slow down the experiments and to af-
fect the efficiency of the algorithm. Future improvements
may focus on reducing the computational complexity and
improving the speed performance of the implementation.

7. IMPLEMENTATION DETAILS

This project is implemented entirely in MATLAB. Full
source code is available online 5 .

wholeWorkflow.m implements the entire detection and
interpolation process in one script. It reads an audio file
and write the declicked signal into another one. To make
experiments easier, it is functionized in deClick.m and
called in the master experiment script main.m. The other
scripts in the repository are for generating the plots pre-
sented in this report. Please see README.md for more
details.
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