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1. OVERVIEW

Chroma features, also referred to as pitch class profiles [3],
can be obtained by mapping the frequency bins obtained
through Fourier transform to the twelve bins corresponding
to the twelve pitch classes in a chromatic scale. By plac-
ing the chroma vector computed from each frame along the
temporal axis, we obtain a 2-dimensional graph represen-
tation, which is called a chromagram. As a widely used
representation in signal processing, the spectrogram dis-
plays the energy distribution of the signal over frequency
and time. Similarly, the chromagram reflects the energy
distribution over pitch classes (or chroma) and time. As
pitches with the same chroma often play similar harmonic
roles, the chroma features are often more useful than the
spectrum-based features in representing the harmonic as-
pects of music.

1.1 Objectives

The main objective of this project is to explore the chroma
feature and its applications in computational music pro-
cessing and analysis. Specifically, an algorithm for ex-
tracting Harmonic Pitch Class Profile (HPCP) from poly-
phonic audio signals is implemented. As an application
and validation of the HPCP feature, a key estimation ex-
periment is performed. The implemented algorithm and
experiment are both adapted from [4] with slight modifi-
cations. By verifying related theory and analyzing the re-
sults, it is shown that HPCP closely correlates to the tonal
aspects of polyphonic music, and can thus be a powerful
tool in estimating the key of a musical piece or measuring
the similarity in terms of key between pieces and genres.

1.2 Report Structure

This report is organized as follows. Section 2 gives a brief
description of concepts of HPCP and other related features.
Section 3 presents the methodology for extracting HPCP
from polyphonic audio signals. Section 4 reports on the
design of the key estimation experiment and evaluation of
the results. The conclusion, limitation, and potential im-
provements are discussed in section 5. Finally, a detailed
description of the MATLAB implementation is given in
section 6.

2. THE CONCEPTS

Chroma feature is related to our perception of music. Hu-
man perception of a musical pitch can be represented in
two dimensions: tone height and chroma [7]. The tone
height is related to the rise in perceived pitch when the fre-
quency increases while the chroma relates to the perceived
similarity in “color” between notes that differ by one or
several octaves. This makes the chroma feature an ideal
musically-informed feature for analyzing music audio sig-
nals.

2.1 HPCP, PCP, and Chromagram

In western music notations, chroma is denoted by the pitch
class and tone height is denoted by the octave number. As
proposed in [4], HPCP can be considered a variant of the
pitch class profile (PCP) proposed by [3] and the inten-
sity map in the Simple Auditory Model (SAM) proposed
by [5]. Essentially, it is a 12-dimensional (or 24, 36... de-
pending on bin resolution) vector that represents the energy
distribution over the twelve different pitch classes in an
equal-tempered scale. An instantaneous HPCP vector can
be considered a column taken from a chromagram without
logarithmic compression.

As proposed in [4], the computation of HPCP is based
on PCP, with the following modifications: first, only a sub-
set of spectral peaks contribute to HPCP bins; second, 36
instead of 12 bins are used in an HPCP vector, increas-
ing the resolution to 1/3 of a semitone; third, each eligible
spectral peak contributes to more than 1 bins in HPCP, and
the contributions are scaled by a weighting function. This
is further explained in the HPCP Computation section.

2.2 Feature Hierarchy

Before presenting the procedure for calculating instanta-
neous and global HPCP, we briefly describe the different
temporal scales and levels of abstraction of the features
as proposed in [4]. In the feature design process of this
project, we distinguish between features on two abstrac-
tion levels. Features directly computed from the signal are
considered low-level features. By processing and analyz-
ing low-level features, we can obtain descriptors that re-
flect the musical content of the signal, which are defined
as high-level features. We also distinguish between two
temporal scales. Features related to one analysis frame are
defined as instantaneous features while features related to a
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Figure 1. HPCP Computation

whole piece of music is considered global features. For ex-
ample, the HPCP vector obtained by analyzing one frame
of audio data is an instantaneous low-level feature. By av-
eraging the instantaneous HPCPs vectors over all frames,
we get one HPCP vector for the whole piece, which is a
global low-level feature. The global HPCP vector is then
correlated with the key profile matrix to produce the key
estimation result for the piece. This includes the estimated
tonic, mode, and key strength, which are all global high-
level features.

3. EXTRACTING HPCP

An overview of the algorithm for computing the instan-
taneous and global HPCP vectors is shown in Figure 1.
The algorithm is adapted from [4] with slight modifica-

tions. Each component of the algorithm will be described
in more detail in the following subsections.

3.1 Preprocessing

The preprocessing scheme used in this project is different
from what is proposed in [4]. In [4], the preprocessing
is performed on a frame-by-frame basis, where a transient
detection algorithm is used to eliminate the transient re-
gions in each frame, so that the harmonically-noisy areas
within the frame are not analyzed. This can reduce the
computational cost, but some information is lost. Consid-
ering the transient regions only make up a small part of the
whole frame, they should not make much difference in the
overall result. Therefore, we choose to keep the transient
regions in our analysis. Besides, we add one preprocessing
step on the piece level, which is to remove the leading and
trailing zeros in each audio excerpt.

3.2 Spectral Analysis

After the preprocessing step, the input audio signal is split
into frames. Then spectral analysis is performed on each
frame. Each analysis frame is multiplied by a window
function. In development for this project, different window
functions are tested. In the end, Blackman-Harris window
is used in the implementation. In order to achieve adequate
frequency resolution, we use a frame size of 4096 samples
and a hop size of 512 samples. Fast Fourier Transform
(FFT) is then performed on each windowed frame.

For a sampling rate of 44.1KHz, one frame lasts for
about 92.9 ms. This further disproves the usage of the
transient elimination algorithm used in [4], where the ar-
eas located 50ms before and after the transients are elimi-
nated and ignored for analysis. Removing regions near the
transients this way could result in whole frames of data be-
ing eliminated, which may jeopardize the integrity of har-
monic information captured by the HPCP.

3.3 Peak Detection

Similar to [4], we use peak detection to capture the local
maxima in each magnitude spectrum, i.e. spectral peaks.
In [4], two constraints are set for the peaks. For a spec-
tral peak to be considered in HPCP computation, its mag-
nitude has to be higher than a threshold (-100dB), and
its frequency must fall within a frequency range of [100,
5000] Hz. In development for this project, it is found that
adding this magnitude threshold does not produce signif-
icant change in the result. Therefore the magnitude con-
straint is discarded. On the other hand, the frequency con-
straint is kept in order to eliminate percussion and instru-
mental noise that are often present in music audio record-
ings.

3.4 HPCP Computation

Using the spectral peaks extracted from each frame, we
compute the instantaneous HPCP vector. In traditional
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chroma feature computation, each peak in the spectrum
only contributes to one chroma bin, i.e. the bin whose
center frequency is the closest to the peak frequency. In
this project, a higher chroma resolution is used. Instead
of 12 bins corresponding to the 12 semitones in an equal-
tempered scale, 36 bins are used, which increases the bin
resolution to 1/3 semitone. Also, each spectral peak con-
tributes to a weighting window of 4 bins, i.e. 4/3 semi-
tones. The weight for each spectral peak is determined by
its distance from the center frequency of the bin. The cen-
ter frequency of the nth chroma bin is obtained by

fo = frep2n/size 4))

where n=1,...,size, and in our case, size=36. We choose
the concert pitch A4=440Hz as the reference frequency
fres here, but other notes can also be used without altering
the result.

The absolute distance in semitones between the fre-
quency of the ith peak f; and the nth bin center frequency

is given by
ds = 12log, <:){l> 2)

Considering octave equivalence, this absolute distance in
semitones can be converted to pitch class distance by

d, =ds+12m 3)

where m is an integer that minimizes the absolute value of
distance. Then the weight function is given by
2 (m_d
w(n, f;) = { o (5557) ldl <05l

ld| > 0.5 @)

where [ equals the weighting window length in semitones.

In this case, {=4/3. This gives the weight of the ¢th peak

frequency in computing the nth bin of the instantaneous

HPCP vector. A plot of the weighting function is shown in
Figure 2, which is taken from [4].

Finally, the instantaneous HPCP values are computed

by

Npeaks

HPCP(n) = Z w(n, fi)a? Q)

where n=1,2,...,size denotes the HPCP bin index. npeaks

stands for the number of spectral peaks in the current

frame, and the amplitude of the ¢th peak is denoted by
a;. In the key estimation context, the weighting scheme
and higher chroma resolution make the model more robust
against slight tuning differences that could be present be-
tween different music pieces, and thus reduce the estima-
tion errors.

For each frame, the instantaneous HPCP vector is nor-
malized with respect to its maximum value

_ HPCP(n)
~ Max, (HPCP(n))

HPCPnormalized (Tl) (6)
By taking the average over all instantaneous HPCPs for a
given piece, we obtain the global HPCP, which captures
the harmonic information of the piece and is then used in
estimating the key.

4. KEY ESTIMATION

Key describes the tonic and mode of a tonal piece of mu-
sic. To validate the HPCP features, we implement the key
estimation experiment described in [4]. In this section, we
present the key estimation pipeline using the above men-
tioned HPCP audio feature. We describe the test dataset,
present the estimation algorithm, and evaluate the estima-
tion results.

4.1 Dataset

In this project, an internal dataset within my lab is used.
The dataset consists of 164 pieces of classical music,
which are all synthesized from MIDI files and 45 pieces
of classical music recordings recorded from live perfor-
mances, including 23 pieces of piano recordings and 22
pieces of cello recordings. Each audio file is annotated
manually with its key and has constant tonic and mode
throughout the piece. The dataset covers a variety of dif-
ferent tonics and modes. The key distribution is shown in
Table 1.

4.2 Procedure

For each audio file in the dataset, the global HPCP is ex-
tracted using the methodology mentioned in the last sec-
tion. To estimate the key, the global HPCP vector of each
piece is correlated with a matrix K of key profiles.

R(i, j) = r(HPCP, K(i, ) (7

1=1,2 is the index of modes. 1 denotes major and 2 de-
notes minor. j=I,...,12 is the index of tonics. The highest
correlation value R (imax, jmax) = max; ;(R(7, 7)) corre-
sponds to the estimated mode and tonic, indexed by %max
and jmax respectively. The correlation value itself mea-
sures the degree of key strength, that is, how “tonal” the
music is.

Key profiles describe the tonal hierarchies of major
and minor keys. The key profile matrix K is of the size
2x12x 36, corresponding to 2 modes, 12 key notes, and 36
HPCP bins. Each key profile vector K (i, j) is of the same



Figure 4. Global HPCP of an excerpt in C Major.

Tonic | Major | Minor | Total | Percentage
A 10 20 30 14.35
A#/Bb | 16 0 16 7.65
B 1 4 5 2.39
C 18 13 31 14.83
C¢/Db | O 4 4 1.91
D 20 17 37 17.70
D4/Eb | 23 1 24 11.48
E 5 5 10 4.78
F 19 1 20 9.57
F4/Gb | 1 0 1 0.48
G 22 8 30 14.35
Gy/Ab | 1 0 1 0.48

Table 1. Dataset Key Distribution

size as the HPCP vector. There are 12 different tonics and
2 different modes, so there are a total of 24 key profile vec-
tors. The key profile values measure how each pitch class
fits into different keys. As shown in Figure 3, the key pro-
files used in this project is directly taken from [4], which
is 12 samples in length. Linear interpolation is then per-
formed to expand the profile to the same size as the HPCP
vector. The key profiles are assumed to be transposition-
invariant, i.e. do not change with respect to different ton-
ics. All 24 key profiles can thus be obtained by simply
shifting the major and minor profiles shown in Figure 3.
In analyzing a polyphonic audio excerpt in C major, its
global HPCP is computed and shown in Figure 4 It can be
seen that the highest energy peaks occur at the tonic C and
the dominant G. Other peaks can be observed at the second

Correlation with Major Profiles
T T T T T

L L L L L L L L L L
A AR B c C# o D# E F F# G G#

Major profile
1 T T T TR T
A\
08 | TR
08 [ / \ 1
! A A / '\
\ / IS 1
o4y / \\ \\\ / "\l\ \ /f/ ]
ozf N/ \ AN / NS j
\ "/ ‘\ “J \ / \
T 1 1] sD D i il
\ Minor profile
T .;,.‘\‘l.
08 \.\
06 —\, AN A
N TN 2NIA /
oar \ { Y o
\
0z \ \ < / ]
0 L EINAT L i
T 1 1] sD ] vi il

Figure 3. Interpolated Key Profiles.

Figure 5. Correlations of a C Major HPCP with the key
profiles.

degree D and the third degree E, which agrees with the
major key profile. Its correlations with the 24 key profiles
is shown in Figure 5 The highest correlation value is 0.82,
which occurs in C major. This determines the estimated
tonality. The second highest peak occurs at C minor, which
is the relative minor that shares the same dominant and
sub-dominant chords.

4.3 Evaluation

The same key estimation procedure is used on all excerpts
in the dataset. Considering the significant difference in re-
sults, we separately evaluate the performance of the algo-
rithm on the MIDI-synthesized data and the real record-
ings. The same metrics as [4] are used.

4.3.1 MIDI-Synthesized Audio

The result of key estimation on MIDI-synthesized audio
excerpts is shown in Table 2. It is observed that 83.54% of
excerpts are correctly estimated in terms of both tonic and
mode. This performance proves that the key estimation
model is doing well, and the HPCP features do manage to
capture the relative intensity of each pitch class, which is
the key requisite for performing key estimation.

4.3.2 Real Recordings

The algorithm is also evaluated on real recordings, i.e.
recordings made from live performances, which are gener-
ally more noisy than MIDI-synthesized excerpts. The real




Metric Number | Percentage
Correct 137 83.54
Only mode errors 3 1.83

Only key note errors 8 4.88

Key note and mode errors | 16 9.75

Table 2. Evaluation results on MIDI-synthesized data

Metric Number | Percentage
Correct 18 78.26
Only mode errors 1 4.35

Only key note errors 1 4.35

Key note and mode errors | 3 13.04

Table 3. Evaluation results on piano recordings

recordings in our dataset contain both piano recordings and
cello recordings. The results are shown separately for rea-
sons that we will explain later.

As shown in Table 3, for piano recordings, 78.26% are
correctly estimated. The accuracy is slightly lower than es-
timating synthesized audio. This is normal as real record-
ings generally contain more background noise and poten-
tial tempo and timbre changes, which can likely affect the
accuracy.

However, the algorithm is not working well on cello
recordings. The result on cello recordings is shown in
Table 4

It is shocking at first to see such a poor result. Using
real recordings, it is expected to see a worse performance
than synthesized audio, but such a huge degradation is to-
tally unanticipated. After observing and comparing the es-
timated output and the ground-truth side-by-side, it is seen
that out of the 19 incorrect estimations with only key note
errors, 17 of them are higher than the ground-truth by ex-
actly one semitone. A segment of the output file showing
the results is shown in Figure 6. The first column shows the
audio file names (without extension). The second column
shows the key labels, which are considered the ground-
truth. The third and fourth columns show the estimated

Metric Number | Percentage
Correct 1 4.55

Only mode errors 0 0

Only key note errors 19 86.36

Key note and mode errors | 2 9.09

Table 4. Evaluation results on cello recordings

CelloSuiteliv_G G G# 0.469241
CelloSuitelv_G G G# 0.489701
CelloSuitelvi_G G G# 0.436877
CelloSuite2i_d d d# ©0.662897
CelloSuite2ii_d d d# ©0.697173
CelloSuite2iv_d d d# ©0.660208
CelloSuite2v_d d D# ©.691549
CelloSuite2vi_d d d# ©.651625
CelloSuite3i_C C C# @.553865
CelloSuite3ii_C C C# 0.560551
CelloSuite3iii_C C C# 0.453135

Figure 6. A segment of the output file showing results

key and key strength respectively.

To investigate this interesting error pattern, we used the
Sonic Visualizer software [2] to inspect the tuning of the
recordings. The global tuning, i.e. frequency of the con-
cert pitch in Hz, is estimated on piano recordings, cello
recordings, as well as MIDI-synthesized excerpts. It is
seen that the piano recordings and MIDI-synthesized audio
files generally use a concert pitch of around 440Hz, which
is the standard tuning, while the cello recording portion of
the dataset is roughly centered around A4=450Hz. This
tuning difference is likely responsible for the one semitone
deviation in the key estimation of the cello excerpts.

To further verify this, the HPCP bins are re-computed.
In order to accommodate the tuning used by cello record-
ings, the reference frequency used in Equation 1 is set to
450Hz, and the center frequencies of HPCP bins are cal-
culated accordingly. However, changing this frequency in
the model only corrected some of the results on the pre-
dictions. The accuracy achieved on cello recordings is still
far from the accuracy achieved on piano recordings and
MIDI-synthesized audio files, which are shown in Table 2
and Table 3.

5. CONCLUSION AND FUTURE WORK

In this project, the algorithm for extracting HPCP and key
estimation proposed by [4] is implemented with several
modifications. The algorithm achieved satisfactory per-
formance on both MIDI-synthesized pieces and piano ex-
cerpts recorded from live performances.

There was an interesting error pattern in which the pre-
dictions of most cello recordings were off by one semitone.
An inspection of the tuning of the cello pieces indicated
that they were roughly centered around A4=450Hz. How-
ever, changing this frequency in the model did not pro-
duce satisfactory results on the predictions. This suggests
that more complex difference might exist between acous-
tic cello performances and acoustic piano performances.
More investigation into this difference is left for future
work.

Potential performance improvement could be achieved
by making the algorithm more robust against potential
tuning difference and background noise. It is also ob-




served that estimated key strength is generally lower on
real recordings than MIDI-synthesized excerpts, which
suggests that the noise and timbre changes in real record-
ings might affect the quality of extracted HPCP. In order to
build a more robust model and achieve better performance,
more complex preprocessing steps and chroma enhancing
techniques might be required.

Moreover, there are various methods for extracting
chroma features from audio signals. In this project, the
method based on Short Time Fourier Transform (STFT)
is implemented, which is more closely related to what we
have seen in class. As seen In some other literature [1] [6].
Constant-Q Transform (CQT) is another commonly used
approach for extracting chroma features, where the fre-
quency channels are logarithmically spaced. We leave the
exploration of CQT-based methodology for future work.

6. IMPLEMENTATION DETAILS

This project is implemented entirely in MATLAB. The
code for all components of this project is available on-
line .

The algorithm for extracting HPCP from audio signals
is implemented in show_hpcp.m, which reads a single au-
dio file, computes the instantaneous HPCP for every frame
and then generates a plot of the global HPCP vector. This
part of the algorithm is functionized in get_hpcp.m.

The key profiles used in key estimation can be plotted
with show_profile.m, where the 12 discrete values of both
major and minor key profiles are linearly interpolated to
get all 36 key profile values. This part is functionized in
get_profile.m. These two scripts both call interp_profile.m,
which is a function for linear interpolation.

To generate a key estimation for one single audio ex-
cerpt, run show_single.m. This script is dependent on the
functions get_profile.m and get_hpcp.m. It generates a plot
of the correlation values with all 24 key profiles, like the
one shown in Figure 5, the highest correlation value is cir-
cled in red. The label corresponding to the highest correla-
tion value gives the estimated key.

The key estimation process is functionized in
estm_key.m. It makes use of get_hpcp.m and get_profile.m,
and calculates a correlation value for each of the 24 key
profile vectors. The highest correlation value (tonalness)
and its corresponding label are returned.

Putting it all together, the experiment on the test dataset
is performed by running main.m. It loops through all au-
dio files in a directory and writes the key estimation result,
including the file names, estimated keys, and tonalness val-
ues, into a text file.

All the scripts and audio files in the project folder are
arranged in a way that is ready to run without the need for
any modification. Nonetheless, everything is customizable
and different audio files can also be tested.

! https://github.com/jwang44/HPCP-Key-Finder
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